Unit 1 Review: Metrics, Measurement, and significant Figures Answer Key

INSTRUCTIONS: Answer each question thoroughly. Use complete sentences where appropriate and remember to use units and significant figure rules in each question! This unit corresponds to Chapters 1-2 in your textbook.

1. Name the fundamental units (name and abbreviation) for each of the following measurements:
a. Length: meter (m)
b. Time: second (s)
c. Mass: kilogram (kg)
2. What determines the precision of a measurement?

The precision of the measurement tool is the determining factor. For example, we can be precise to 0.01 cm with a meter stick and 0.001 cm with a micrometer.
3. How are base units and derived units related?

Derived units are a combination of $2+$ fundamental (base) units.
4. Define the following:
a. Accuracy of a Data Set

Accuracy is an indication of how close a data set/result is to the accepted (true) value.
b. Precision of a Data Set

Precision is an indication of how consistent a data set is relative to itself (how close together is a set of data).
5. Four students measured the mass of a block of wood for an experiment. Determine the average mass from their measurements:

$$
\begin{aligned}
& \begin{array}{cccc}
1.20 \mathrm{~kg} & 1125 \mathrm{~g} & 1.1 \mathrm{~kg} & 1201.2 \mathrm{~g} \\
& 1.125 \mathrm{~kg} & & 1.2012 \mathrm{~kg}
\end{array} \\
& \text { Average }=\frac{1.20 \mathrm{~kg}+1.125 \mathrm{~kg}+1.1 \mathrm{~kg}+1.2012 \mathrm{~kg}}{4}=\frac{4.6 \mathrm{~kg}}{4}=1.2 \mathrm{~kg} \quad \begin{array}{c}
\text { Sig Fig } \\
\leftarrow \begin{array}{c}
\text { Addition } \\
\text { Rule! }
\end{array}
\end{array}
\end{aligned}
$$

6. Re-write the following in standard notation:
a. $\quad 1.75 \times 10^{4} \mathrm{~g}=\underline{17,500 \mathrm{~g}}$
b. $4.68 \times 10^{-6} \mathrm{~m}=0.00000468 \mathrm{~m}$ \qquad
7. Rewrite the following in scientific notation:
a. $\quad 1500 \mathrm{~mL}=1.5 \times 10^{3} \mathrm{~mL}$
b. $197,400 \mathrm{~m}=\underline{1.974 \times 10^{5} \mathrm{~m}}$
c. $\quad 0.00000520 \mathrm{~kg}=5.20 \times 10^{-6} \mathrm{~kg}$
d. $\quad 0.006001 \mathrm{~g}=\underline{6.001 \times 10^{-3} \mathrm{~g}}$
8. How many significant figures are in each of the following measurements?
a. 23.456 \qquad 5
d. $1000 _1$
b. 0.00200 \qquad e. 100 . \qquad
c. 1000.01 \qquad f. 100.0 \qquad
9. Determine the answers for the following addition \& subtraction problems, reporting your answer to the appropriate number of sig figs: Smallest level of precision (decimal places)
a. $263.36+\underline{\mathbf{2 3 6}}=$ \qquad c. $\mathbf{5 6 8}-236.23=\underline{332}$
b. $\quad \underline{\mathbf{2 5 8}}+.0123=$ \qquad d. $255.55+\underline{\mathbf{2 0 . 0}}=\underline{275.6}$
10. Determine the answers for the following Multiplication \& division problems, reporting your answer to the appropriate number of sig figs: Smallest number of sig figs
a. $50.5 \times \underline{\mathbf{0 . 1 5}}=$ \qquad c. $250.00 \div \underline{\mathbf{2 5 . 0 0}}=\underline{\mathbf{1 0 . 0 0}}$
b. $135.90 \times \mathbf{0 . 1 2 5 0}=$ \qquad d. $\quad \mathbf{0 . 3 0 5} \div 0.1050=$ \qquad
11. Record the following conversion factors:
a. $\quad 1 \mathrm{~km}=$ \qquad cm
c. $\quad 1 \mathrm{~W}=0.001 \mathrm{~kW}$
b. $1 \mathrm{~s}=$ \qquad ms
d. $1 \mathrm{MV}=\xrightarrow{1,000,000} \mathrm{~V}$
12. Complete the following metric conversions. Report your answers in scientific notation.
a. $\quad 0.0145 \mathrm{~s}=14.5=1.45 \times 10^{1} \mathrm{~ms}$
b. $537000 \mathrm{~cm}=5.37=5.37 \times 10^{0} \mathrm{~km}$
c. $\quad 15.07 \mathrm{~g}=\underline{0.01507}=\mathbf{1 . 5 0 7 \times 1 0 ^ { - 2 }} \mathrm{kg}$
d. $0.540 \mathrm{MW}=\underline{540,000}=5.40 \times 10^{5} \mathrm{~W}$
13. A school bus full of students weighs 10638 lbs. What is the mass of this bus in kg ?

$$
5 \text { s.f. }
$$

$10,638 \mathrm{lb}$	1 kg		
	2.2 lb	$=$	$4,835.5 \mathrm{~kg}$
:---			

14. Washington State covers a land area of $66544 \mathrm{mi}^{2}$. What is this land area in square kilometers?

\downarrow 5 s.f.				
$(1609)^{2} \mathrm{~m}^{2}$	$1 \mathrm{~km}^{2}$			
$66,544 \mathrm{mi}^{2}$	$1 \mathrm{mi}^{2}$	$(1000)^{2} \mathrm{~m}^{2}$	$=$	$172,270 \mathrm{~km}^{2}$
:---				

15. You have been told that the highway speed of a car was $1.5 \mathrm{~m} / \mathrm{s}$. Is this a reasonable speed, or has someone done a conversion wrong? Show a conversion from $1.5 \mathrm{~m} / \mathrm{s}$ to miles per hour using the factor label method to justify your answer.

| 2 s.f. | | |
| :---: | :---: | :---: | :---: |
| 1.5 m | 1 mi | 3600 s |
| s | 1609 m | 1 hr |

This is NOT an appropriate highway speed!

