PAT PROJECTILE REVIEW (PPR)

- 1. **Pat's Potato**: Pat wants to shoot a potato he cooked in foil in his campfire to his brother, Pete, on the opposite riverbank.
 - a. What is the total time in the air for the potato?
 - b. What is its maximum height?
 - c. If Pete is able to catch the potato, how far away from Pat is he?

a.
$$t total = ? = t up + t down$$

$$\Delta V_V = VV_2 - VV_1 = g \cdot t up$$

$$t_{up} = \frac{-Vv_1}{g} = \frac{-12.5 \text{ m/s}}{-9.80 \text{m/s}^2} = \frac{1.285}{-9.80 \text{m/s}^2}$$

$$t total = 1.285 + 1.285$$

$$t total = 2.565 + 2 decimals$$

$$2.555 = i t not rounding$$
b. $d_V = ? = \frac{1}{2}gt^2$

$$= \frac{1}{2}(9.80 \text{ m/s}^2)(1.28s)^2$$

$$d_V = 8.03 \text{ m} \quad 3.06$$

$$7.91 \text{ m is rounding}$$
c. $d_h = ? = V_h \cdot t total$

$$= (21.7 \text{ m/s})(2.56s)$$

$$d_h = 55.6 \text{ m} \quad 3.66$$

$$55.2 \text{ m is not rounding}$$

2. Snowpack Pat: It takes Pat 4.0 seconds to travel the last horizontal 20.0 m as shown below. Assume this constant velocity that is his launch speed:

- How long is Pat in the air?
- How far away does Pat land?
 - What are the magnitudes of the horizontal and vertical components of Pat just before landing?

total = ? =
$$t_{dawn}$$
 $dv = \frac{1}{2}gt^2$ 2> $t = \sqrt{\frac{2dv}{g}} = \sqrt{\frac{2(125m)}{(-9.80m/s^2)}}$
 $t_{down} = 5.05s$ 3 46

$$V_h = \frac{d}{L} = \frac{20.0 \, \text{m}}{4.0 \, \text{s}} = 5.0 \, \text{m/s}$$

C.
$$V_h \stackrel{!}{\sim} V_{V2}$$
 at bottom =?
 $V_h = constant$ $\Delta V_V = V_{V2} - W_1 = g \cdot t_{fact}$

$$V_{V2} = (9.80 \text{m/s}^2)(5.05 \text{s})$$

$$V_h = 5.0 \, \text{m/s}$$
 $V_{V_2} = -49.5 \, \text{m/s}$

3. Pat Plays Tennis: At the ball's maximum height...

- a. What is the ball's velocity?
- b. In what direction is the ball accelerating?
- c. What is the magnitude of its horizontal acceleration? Vertical?
- d. How does its time up to max height compare with its time down?

a. Vy at max. height is 0 m/s

b. at max. height, the ball is accilerating downwards

C. an = 0 m/s2; av = 9 = 9.80m/s2 (downward)

d. tup = tdown for type I projectiles

4. **Paintball Pat**: Pat launches a paintball horizontally with an initial velocity of 45.0 ^m/_s. The object strikes the ground 4.2 seconds later. How far from the muzzle does the ball land?

- 5. Pat's Pole Vault: Pat launches himself at 17 m/s at an angle of 40°.
 - a. What is the x-component of Pat's launch speed?
 - b. If Pat wants to land 35 meters away, what is the minimum speed he needs to launch at?

$$V_{i} = 17 \, \text{m/s}$$
 @ 40°
 $V_{h} = V_{i} \cos \theta$ $V_{v_{1}} = V_{i} \sin \theta$
 $= (17 \, \text{m/s}) \cos 40^{\circ}$ $= (17 \, \text{m/s}) \sin 40^{\circ}$
 $V_{h} = 170 \, \text{m/s}$ $V_{v_{1}} = 11 \, \text{m/s}$

a.
$$V_h = 170 \,\text{m/s}$$

b. $V_{i.} = ?$ $d_h = \frac{V_i^2 \sin(2.0)}{g} \approx V_i = \frac{d_h \cdot g}{\sin(20)}$
 $V_i = \frac{(35 \,\text{m})(9.80 \,\text{m/s}_2)}{\sin(2.40^\circ)}$

6. **Pat & His Parakeet**: Pat's parakeet, Polly, flies 11 meters North and 16 meters West to get to Pat's House.

- a. What direction would the resultant displacement be in?
- b. What is the resultant displacement?

16 m (W)

11 m

(N)

11m

(N)

A. Morthwest

$$\Theta_{R} = \tan^{-1}\left(\frac{1 \text{lom}}{11\text{m}}\right)$$
 $O_{R} = 55^{\circ} \text{ W of N}$

or 35° N of W

b.
$$R = ?$$

$$R = \sqrt{R_x^2 + R_y^2}$$

$$= \sqrt{(1 \text{lem})^2 + (11 \text{m})^2}$$

$$R = 19 \text{ m}$$

- 7. Pilot Pat: Pat's helicopter flies at a constant 50.0 m/s. Calculate how far away (the horizontal range) Pat should release the supplies so they land at the village.
 - a. How will the horizontal location of the package compare with the helicopter's horizontal location?
 - b. What are the horizontal and vertical components of the helicopter's speed?
 - c. What is the package's horizontal speed after 2 seconds?

