PRACTICE WITH NEWTON'S 1ST AND 2ND LAWS ANSWER KEY

Instructions: Answer the following questions in your journal. Make sure to draw a FBD for each situation and show all of your work completely.

1. How much tension force must a rope withstand if it is used to accelerate a 1050 kg car horizontally at 1.2 $^{\rm m}/_{\rm s^2}$? (Ignore friction)

$$F_{NET} = F_{T} = ma$$

$$= (1050 \text{ kg}) (1.2 \text{ m/s}^{2})$$

$$F_{T} = 1260 \text{ N}$$

- 2. The net horizontal thrust of a jet-powered supersonic land vehicle, which accelerates at 7 g's, is $4\overline{0},000$ N. (1 g would be an acceleration of 9.8 $^{\rm m}/_{\rm S^2}$)
 - a. What is the vehicle's mass?
 - b. If the vehicle above starts at rest, and accelerates as described for 3.0 s, how fast will it be going at the end of the 3.0 seconds?
 - c. How far will the vehicle have traveled at the end of the 3.0 seconds?

FN Fapp a.
$$a = 7 \cdot (9.80 \,\text{m/s}^2) = 68.6 \,\text{m/s}^2$$

Fapp a. $a = 7 \cdot (9.80 \,\text{m/s}^2) = 68.6 \,\text{m/s}^2$

FNET = Ma => $m = \frac{F_{NET}}{a} = \frac{40,000 \,\text{N}}{68.6 \,\text{m/s}^2}$
 $m = 583 \,\text{kg}$

b.
$$V_1 = 0$$

 $a = 68.6 \text{ m/s}^2$
 $t = 3 \text{ s}$
 $V_2 = ?$

$$V_1 = 0$$
 $0 = (68.6 \text{ m/s}^2)$
 $V_2 = \sqrt{1 + at}$
 $V_3 = 0 + (68.6 \text{ m/s}^2)(3s)$
 $V_4 = 3s$
 $V_2 = ?$
 $V_2 = 206 \text{ m/s}$
 $V_2 = 206 \text{ m/s}$
 $V_3 = 206 \text{ m/s}$

$$d = y/2 + \frac{1}{2}at^{2}$$

$$= 0 + \frac{1}{2}(68.6 \text{ m/s}^{2})(3s)^{2}$$

$$d = 309 \text{ m}$$

- 3. A pinecone with a mass of 10.0 grams falls off a tree (yes, there is some biology...)
 - a. At one instant during its fall it has an acceleration of 6.0 $^{\rm m}/_{\rm s^2}$. What is the force of air drag on the pinecone at that instant?
 - b. What is the force of air drag when the pinecone reaches terminal velocity?

b.
$$\int_{-\infty}^{\infty} F_{air} = 0 = F_{air} - F_{g}$$

 $\int_{-\infty}^{\infty} F_{air} = mg = (0.01 \text{kg})(9.80 \text{m/s}^2)$
 $\int_{-\infty}^{\infty} F_{air} = 0.098 \text{N}$

- 4. A horse pulls a 105 kg cart with a net force of 300. N for 5.00 seconds.
 - a. What is the acceleration of the cart?
 - b. What was the average speed of the cart during the 5.00 seconds?
 - c. How far did it travel during that time?

a. FNET =
$$ma \Rightarrow a = \frac{F_{NET}}{m} = \frac{300 \text{ N}}{105 \text{ kg}}$$

$$a = 2.86 \text{ m/s}$$

b.
$$V = ?$$

$$d = \sqrt{t^{2} + \frac{1}{2}at^{2}}$$

$$= \frac{1}{2} (2.86 \text{ M/s}^{2})(5.00 \text{ s})^{2}$$

$$= \frac{35.7 \text{ m}}{5.00 \text{ s}}$$
C. $V = 7.14 \text{ m/s}$

- 5. A wheelbarrow racer pushed his wheelbarrow so it accelerated at 3.00 $^{\rm m}/_{\rm S^2}$ until it reached a distance of 100. m.
 - a. How much time was required to travel the 100. m?
 - b. If he pushed it with 120. N of net force, what was the mass of the wheelbarrow?
 - c. How fast was it going at the end of the 100. m?

a.
$$d = y_1 t + \frac{1}{2}at^2 =$$
 $t = \sqrt{\frac{2d}{a}} = \sqrt{\frac{2(100m)}{3.00m/s^2}}$

b. FNET = Ma =>
$$m = \frac{FNET}{a} = \frac{120N}{3.00 \text{ M/s}^2}$$

b. FNET = Ma =>
$$M = \frac{F_{NET}}{a} = \frac{120N}{3.00 \text{ M/s}^2}$$
 $M = 40.0 \text{ kg}$
 $M = \frac{F_{NET}}{a} = \frac{120N}{3.00 \text{ M/s}^2}$
 $M = \frac{F_{NET}}{a} = \frac{120N}{3.00 \text{ M/s}^2}$
 $M = \frac{F_{NET}}{a} = \frac{120N}{3.00 \text{ M/s}^2}$

C.
$$V_2 = V_1^{r} + at = (3.00 \text{ m/s}^2)(5)$$

- 6. A race car initially going $1\overline{0}0 \, \text{m/}_{\text{S}}$ suddenly revs up so that a constant 1,600 N of net force is applied to the car. It speeds up to 175 $^{m}/_{s}\,$ in 4.0 seconds.
 - a. What is the car's acceleration?
 - b. What is the car's mass?
 - c. How far did it travel during the 4.0 second period?

a.
$$a = \frac{V_2 - V_1}{t} = \frac{175 \text{ m/s} - 100 \text{ m/s}}{4.0 \text{ s}}$$

$$a = 18.8 \text{ m/s}^2$$

 $N = \frac{F_{NET}}{a} = \frac{1600 \text{ N}}{18.8 \text{ m/s}^2}$

C.
$$d = V_1 t + \frac{1}{2}at^2$$

= $(100 \text{m/s})(4.0 \text{s}) + \frac{1}{2}(18.8 \text{m/s}^2)(4.0 \text{s})^2$
 $d = 550 \text{m}$

- 7. Max is trying to push a heavy 21 kg box across the floor. He manages to push the box at an acceleration of 1.3 $^{\rm m}/_{\rm s^2}$ using a force of 128 Netwons.
 - a. What is the force of friction felt by the box?
 - b. What is the coefficient of friction (μ) between the box and the floor?

$$G = F_{N} = |F_{g}|$$

$$F_{N} = |F_{N}|$$

$$F_{N}$$